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We present a new approach for modelling macrodispersivity in spatially variable
velocity fields, such as exist in geologically heterogeneous formations. Considering a
spectral representation of the velocity, it is recognized that numerical models usually
capture low-wavenumber effects, while the large-wavenumber effects, associated with
subgrid block variability, are suppressed. While this suppression is avoidable if the
heterogeneity is captured at minute detail, that goal is impossible to achieve in all
but the most trivial cases. Representing the effects of the suppressed variability in the
models is made possible using the proposed concept of block-effective macrodisper-
sivity. A tensor is developed, which we refer to as the block-effective macrodispersivity
tensor, whose terms are functions of the characteristic length scales of heterogeneity,
as well as the length scales of the model’s homogenized areas, or numerical grid blocks.
Closed-form expressions are developed for small variability in the log-conductivity and
unidirectional mean flow, and are tested numerically. The use of the block-effective
macrodispersivities allows conditioning of the velocity field on the measurements on
the one hand, while accounting for the effects of unmodelled heterogeneity on the
other, in a numerically reasonable set-up. It is shown that the effects of the grid scale
are similar to those of the plume scale in terms of filtering out the effects of portions
of the velocity spectrum. Hence it is easy to expand the concept of the block-effective
dispersivity to account for the scale of the solute body and the pore-scale dispersion.

1. Introduction
Macrodispersion tensors are commonly used for modelling dispersion of solute

bodies in spatially variable velocity fields. The theory of macrodispersivity has been
explored in by Dagan (1989), Gelhar (1993) and Rubin (1990, 1997). A fundamental
assumption associated with this concept is that the velocity fields are represented only
through their expected value, and that the macrodispersivity tensor accounts for all
the effects of unmodelled spatial variability of the velocity field on mixing. In many
real-life applications, measurements of the conductivity or the velocity are available,
and it is only reasonable to incorporate them into the model, especially due to the
great expense involved. Conditioning models on measured data, however, violates the
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requirement that the velocity field is modelled through its expected value: the inclusion
of measurements leads to local deviation of the velocity field from its expected value.
The risk is that the effects of spatial variability will be duplicated, and will appear as
dispersive fluxes and as advective fluxes. An alternative, consistent approach, which
we pursue here, is to condition the models on the available measurements, and to
remove the effects which are modelled implicitly from the macrodispersion coefficients.

Stochastic modelling often calls for Monte Carlo simulation, requiring repeated
generation of the conductivity field, followed by numerical solutions of the flow
and transport problems. To capture accurately the effects of spatial variability, a
very fine grid is required, with typical grid block scale being equal to only a small
fraction of the log-conductivity integral scale. The ensuing computational burden may
be overwhelming sometimes, and the tendency is to reduce the effort by increasing
the grid block scale. The loss of resolution results in homogenization of relatively
large areas, and in elimination of the subgrid-scale variability from consideration.
Hence measures should be taken to account for the effects which are eliminated by
homogenization. Here we can also envision a modelling approach whereby the effects
of spatial variability are captured in part by modelling directly the heterogeneity of
the conductivity field, and the rest through dispersive fluxes.

Hence, whether we are interested in conditioning of models on measurements, or
in reducing grid block resolution, the ability to separate the effects of modelled and
unmodelled variability is important, and is the main focus of this study.

2. Mathematical statement of the problem
In this study we consider flow and transport in saturated heterogeneous media.

The general approach for treating the effects of media’s heterogeneity and prediction
uncertainty (Dagan 1989) is to model the hydrogeological variables as space random
functions (SRFs), defined through their statistical moments.

Consider a variable such as the log-conductivity Y (x), where x denotes the spatial
coordinate. In this paper, boldface letters denote vectors and capital letters denote
SRFs. Y is defined through its expected value mY = 〈Y 〉, where angled brackets
denote the expected value operator, and its two-point spatial covariance CY (x, x′):

CY (x, x′) = 〈Y ′(x)Y ′(x′)〉, (1)

where Y ′ = Y −mY is the local fluctuation of Y from its expected value. In the case
of stationary variability, CY (x, x′) = CY (|r|) where r = x− x′ is the lag distance. The
spatial variability of Y can also be described in the wavenumber domain, through its
spectrum SY (k), which is the Fourier transform of CY (r), where ki is the wavenumber
corresponding to ri.

The spatial covariance CY yields two important measures of the variability of Y .
The first is the variance of Y , σ2

Y , which is obtained by substituting x = x′ in CY (x, x′).
Additionally, a measure of the directional spatial persistence of Y is provided in the
form of the integral scale IY ,i, which is defined as follows:

IY ,i =

∫ ∞
0

CY (ri) dri, (2)

where ri is the modulus |xi − x′i|, with the subscript i denoting a Cartesian direction,
i= 1, . . . , m, with m being the space dimensionality. Most geological formations are
characterized by different integral scales in different directions (Rubin et al. 1998).

The identification of CY requires a large number of measurements. Since CY is
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a functional which is defined for various ri, its accurate identification requires that
the samples are taken over large areas, and in a way which captures the covariance
for different ri and for all i. Once a model of spatial variability is defined, it can be
used for modelling the effects of the spatial variability on processes such as flow and
contaminant transport. A common approach is Monte Carlo numerical simulations.
In a Monte Carlo study, an image of the hydraulic conductivity is generated, subject
to the target statistics such as mY and CY . That usually implies generating Y -values
at nodes which are a distance λi apart. The image is then used as an input to flow and
transport simulators, and a value of the desired parameter, such as the concentration
of a certain contaminant at some location. This process is repeated numerous times,
until a histogram of the desired variable is obtained.

To reproduce correctly the effects of the spatial variability, a detailed, high-
resolution image of the aquifer needs to be generated. Previous studies (Ababou
et al. 1989; Bellin, Salandin & Rinaldo 1992; Chin 1997) indicates that in the case of
very large plumes, spatial resolution λi of the order 0.25IY ,i is sufficient, implying that
the displacement of the solute body and its dispersion are quite insensitive to spatial
variability at a smaller scale. When dealing with smaller solute bodies, obviously
this is no longer the case, and an even finer resolution may be needed (Dykkar &
Kitanidis 1992).

Generating or sampling Y -values at discrete nodes limits the ability to either
reproduce or capture the desired spatial statistics. Consider the case of Y which is
defined by the spectrum SY (k). According to the Nyquist sampling theorem (Bras
& Rodriguez-Iturbe 1985; Beckie, Aldama & Wood 1996), the spacing between Y -
values, which constitutes the sampling frequency, defines an upper cut-off value for
the frequencies which are recognized. Sampling the Y -field with spacing λi will not
reproduce accurately the spectrum corresponding to frequencies higher than (2λi)

−1.
If we represent the effect of this cut-off as a sharp low-pass filter, the spectrum
reproduced by generating Y -values over nodes with spacing λi is (Beckie et al. 1996):

SN(k) =

{
SY (k) for ki 6

π

λi
, i = 1, . . . , m

0 otherwise.
(3)

The definitions of the Fourier transform pair employed here as well as of the
relationship between spectra and radial spectra are given in the Appendix. The
wavenumber π/λi corresponds to the highest observable frequency fi = (2λi)

−1 (Bras &
Rodriguez-Iturbe 1985). The low-pass filter (3) is only an approximate representation
of the effects of discretization, since the small-scale fluctuations are aliased into the
sampled frequencies. A graphical representation of the invisible and visible spectrum
is given on figure 1.

As the spacing λi decreases, the simulated spectrum SN approaches the target
spectrum SY . However, simulation with small λi implies a very fine grid and a large
computational effort. On the other hand, simulating flow and transport over a field
characterized by a spectrum SN which departs largely from the target spectrum SY
will lead to large errors and discrepancies between the simulated and actual values
of the parameters of interest such as the concentration, due to the elimination of the
large-wavenumber features.

So far we have considered λi to be the spacing between generated Y -values in
a Monte Carlo simulation. The scale λi can also represent the average spacing of
the measurements taken in the field. Due to the large expenditure associated with
procurement of the measurements, the modeller is motivated to condition the model
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Figure 1. Illustration of the sharp, low-pass filter in two-dimensional space. Ỹ denote the variability
which is wiped out due to partial sampling of block homogenization. Y denotes the complementary
variability.

on the measurements while accounting for the unsampled variability. Hence, whether
we are dealing with a λi value which represents numerical constraints or a field
situation, in both cases the lost portion of the spectrum is of a great concern.

That dichotomy between the need for high resolution and its implications in terms
of costs can be potentially reconciled if steps are taken to account for the ‘lost’
variability. The goal of this paper is to investigate this option and to incorporate the
effects of the unmodelled spectrum on transport without resorting to fine-scale grid
discretization, using the concept of block dispersivities.

The basic idea is to represent Y as follows:

Y (x) = mY + Y (x) + Ỹ (x), (4)

where Y is a zero-mean fluctuation, characterized by the spectrum SY , representing

the variability modelled/captured by simulations and or measurements, and Ỹ is the
zero-mean fluctuation characterized by the spectrum SY , which represents the subgrid
variability. From the previous discussion, SY is analogous to SN , while SY represents
the complementary, invisible spectrum shown on figure 1. To grasp the effect of the
invisible spectrum SY on transport, its effect on variables such as hydraulic head and
velocity needs to be investigated, see § 3.

Note that since the sum of Y and Ỹ equals Y −mY , we have that

σ2
Y = 〈(Y + Ỹ )2〉; (5)

however, no order relationship exists between Y and Ỹ , and each of these variables is
of the order of the standard deviation σY . They are characterized by different integral
scales: Y represents the low-frequency variability, and its integral scale is much larger

than that of Ỹ . In the subsequent derivation, we omit the reference to the space
coordinates unless deemed necessary.

3. The significance of subgrid variability

We start by considering the effects of Y and Ỹ on the hydraulic head H . In doing
that, we follow and extend the ideas of Dagan (1984) and Ababou & Gelhar (1990).
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Assuming steady-state divergence-free flow, the relationship between the head and
log-conductivity is given by (Dagan 1984):

∇2H + ∇H · ∇Y = 0. (6)

To identify the hydraulic head responses which correspond to Y and Ỹ , we define
the hydraulic head through the truncated series

H(x) =
〈
H(x; σ0

Y )
〉

+ h(x; σ1
Y ) + h̃(x; σ1

Y ) + O(σ2
Y ) (7)

and attempt to define the effects of Y and Ỹ on h and h̃. Assuming that mY is
stationary, and substituting (4) and (7) in (6) leads to

∇2〈H〉+ ∇2h+ ∇2h̃+ (∇〈H〉+ ∇h+ ∇h̃) · ∇(Y + Ỹ ) = 0. (8)

Equation (8) is a stochastic partial differential equation, since all variables in (8),
with the exception of 〈H〉, are random functions. We can focus on the relationship

between the small-scale h̃ and Ỹ by conditional averaging of (8) on the large-scale
variables h and Y . The resulting conditional mean equation

∇2〈H〉+ ∇2h+ ∇〈H〉 · ∇Y + ∇h · ∇Y = −〈∇h̃ · ∇Ỹ 〉 (9)

can then be subtracted from (8), leading to an equation relating h̃ and Ỹ , conditional
on the large-scale fluctuations in both head and log-conductivity:

∇2h̃+ ∇〈H〉 · ∇Ỹ + ∇h · ∇Ỹ + ∇h̃ · ∇Y = −(∇h̃ · ∇Ỹ − 〈∇h̃ · ∇Ỹ 〉). (10)

This equation can be simplified by neglecting products of random fluctuations, yielding

∇2h̃+ ∇〈H〉 · ∇Ỹ + ∇h · ∇Ỹ + ∇h̃ · ∇Y ≈ 0. (11)

At the next step we seek a solution for h in terms of Y and 〈H〉. The order
relationship defined in (7) suggests

∇2〈H〉 = 0, (12)

which we substitute in (9), and by discarding products of fluctuations, we obtain

∇2h = J · ∇Y (13)

where J = −∇〈H〉. Integrating (13) once leads to

∇h = JΓ (Y ), (14)

where Γ is an operator (see Dagan 1985, equation 3g), and Γ (Y ) is of order σY .
Equation (14) can now be coupled with (11) to yield

∇2h̃− J · ∇Ỹ + (JΓ (Y )) · ∇Ỹ + ∇h̃ · ∇Y = 0. (15)

For convenience, we transform (15) into Fourier space, and using the vector k to
denote the wavenumber vector, we obtain

h̃(k) =
J (1− Γ (Y )) · ikỸ (k)

k2 + ik · ∇Y (16)
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where k2 = kjkj , j= 1, . . . , m. In (16), the summation convention applies, and i is the
imaginary unit. Equation (16) contains products of perturbations, which we shall
carry forward until further simplification. Equation (16) is a slight variation on a
result obtained by Ababou & Gelhar (1990).

Recalling that h̃ represents the variability lost due to discretization, we learn from
(16) that the least effect on accurate reproduction of the head surface will occur in
regions of relatively high Y , especially near Y ≈ 1, which are regions of relatively per-
sistent high conductivity, where the high-frequency head response vanishes. The largest
loss in variability will occur at the low-conductivity areas, where Y is negative. The
local gradient of Y also plays an important role, since larger gradients of Y reduce h̃.

At the next step we proceed to develop the local velocity response to large- and
small-scale fluctuations in the log-conductivity. Starting with Darcy’s law:

V = −1

n
K∇H, (17)

and combining (17) with (4) and (7), we obtain at order σY

V =
KG

n
(1 + JY + J Ỹ − ∇h− ∇h̃) (18)

after elimination of products of perturbations. KG = exp (mY ) is the geometric mean
of the conductivity, and n is the porosity. The last equation allows the velocity
response to the large-scale log-conductivity fluctuation

ū =
KG

n
(JY − ∇h) (19)

and to the small-scale log-conductivity fluctuation

ũ =
KG

n
(J Ỹ − ∇h̃) (20)

to be defined. Using tensorial notation and moving to Fourier space, the local velocity
fluctuation becomes

ũj(k) =
KG

n
[JjỸ (k) + ikjh̃(k)]. (21)

Using (16), an explicit expression for ũj in terms of the small- and large-scale
fluctuations of the log-conductivity is obtained:

ũj(k) =
KG

n

{
Jj + ikj

[
Jq(1− Γ (Y ))ikq

k2 + ik · ∇Y
]}

Ỹ (k). (22)

Note that the accurate interpretation of ũj is that it is the small-scale (high-frequency)
component of the velocity fluctuation, as a function of the small-scale component of
the log-conductivity fluctuation, conditional to the large-scale (low-frequency) compo-
nents of the log-conductivity fluctuations. All fluctuations are measured with respect
to the relevant expected value. The conditioning renders ũj non-stationary, since Y

varies in space, and in fact ũj(k) = ũj(k, x). Taking Y = 0 in (22) and ignoring the
tilde sign simplifies (22) and leads to the well-known expression by Dagan (1989), for
velocity fluctuations in spatially variable, stationary aquifers.

Combining (22) with the identity given in the Appendix, the conditional radial
spectrum of the small-scale velocity fluctuations is defined as follows:

ũjl(k|ū) = UqUp

{
δjq − kjkq

k2

}{
δlp − klkp

k2

}
CỸ (k) (23)
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in terms of CY , the radial spectrum of the wiped-out small-scale fluctuations. U =Ui,
i= 1, . . . , m, is the mean velocity vector. This expression is similar to the one defined
previously by Dagan (1989), except that it pertains to the small-scale velocity vari-
ations. Again referring to Appendix A, (23) is the Fourier transform of the Eulerian
velocity covariance ũjl(x, x

′|ū). In developing (23), terms of order (σY )n, with n> 2
were removed for consistency. The most consequential aspect of the higher-order
terms removal is the elimination of non-stationarity. This mathematical form is iden-
tical to the spectrum of the actual velocity field (Dagan 1989; Gelhar 1993), the only
difference being the replacement of the complete spectrum with the truncated one.

As an example, consider the spectrum of the velocity components orthogonal to
the mean flow direction, which we take along the x1-axis:

ũ22(k, x|ū) = U2
1

{
k1k2

k2

}2

CỸ (k). (24)

We can conclude now that as long as a non-zero SỸ exists, the numerically simulated
lateral variability spectrum of the velocity will underestimate the actual one.

4. The effects of subgrid variability on macrodispersion
To capture the effects of the subgrid variability on transport, we consider its effects

on macrodispersion. The objective is to model the macrodispersive flux which is lost
due to the modelled small-scale variability in the velocity field.

Consider the displacement of a solute particle. Its total displacement follows the
Lagrangian description

Xj(t) =

∫ t

0

Vj(t
′) dt′, j = 1, . . . , m. (25)

Taking expected value of (25) and subtracting from (25), with the aid of (18), (19)
and (20), the difference between the displacement and its expected value is obtained:

X ′j(t) =

∫ t

0

uj(t
′) dt′ +

∫ t

0

ũj(t
′) dt′, j = 1, . . . , m, (26)

expressed as the sum of the high- and low-frequency components of the velocity
fluctuation. Since both ũ and ū are of order σY , then so is X ′.

To capture the effects of the small-scale variability, we shall consider the behaviour
of the ũ-field conditional to a given ū-field. Under this definition, the only random
component of the displacement is the second term on the right-hand side of (26), and
the corresponding random component of the displacement is

X̃ ′j(t|ū) =

∫ t

0

ũj(t
′|ū) dt′, j = 1, . . . , m. (27)

Due to its randomness, this quantity can only be defined through its moments. From

the properties of ũ we can establish that 〈X̃ ′j(t|ū)〉 = 0. The conditional displacement
variance is available from squaring (27) and taking expected value, leading to the
displacement variance:

X̃ij(t|ū) = 〈X̃ ′i (t|ū)X̃ ′j(t|ū)〉 =

∫ t

0

∫ t

0

〈ũi(t′|ū)ũj(t′|ū)〉 dt′ dt′′

=

∫ t

0

∫ t

0

ṽij(t
′, t′′|ū) dt′ dt′′, (28)
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where ṽij is the Lagrangian velocity covariance of the small-scale fluctuations ũ. A
fundamental difficulty that we face here resides in the fact that Lagrangian velocity
covariances are generally not available in subsurface applications. However, since

ṽij(t, t
′|ū) = ṽij[X (t),X (t′)|ū] = ṽij[〈X (t)〉+ X ′(t), 〈X (t′)〉+ X ′(t′)|ū] (29)

we get the following relationship between the Lagrangian and Eulerian covariances
(Dagan 1989):

ṽij(t, t
′|ū) = ũij[〈X (t)〉, 〈X (t′)〉|ū] + O(σ3

Y ) (30)

which allows the statement

X̃ij(t|ū) =

∫ t

0

∫ t

0

ũij[〈X (t′)〉, 〈X (t′′)〉|ū] dt′ dt′′. (31)

The significant advantage of (31) over (28) is the removal of nonlinearity. It is
recalled that ũij(x, x

′|ū) is the inverse Fourier transform of ũij(k|ū), defined previously
in (23). Due to the stationarity of ũij(x, x

′|ū), see (23), and limiting our attention to
uniform-in-the-mean flow fields, we can modify (31) to the form

X̃ij(t
′|ū) =

∫ t

0

∫ t

0

ũij[〈X (t′)〉 − 〈X (t′′)〉|ū] dt′ dt′′ =

∫ t

0

∫ t

0

ũij[U(t′ − t′′)] dt′ dt′′ (32)

which no longer requires any conditioning.

For Gaussian displacements X̃ , it has been shown by Dagan (1989) that a macrodis-
persion coefficient can be defined as follows:

D̃ij(t) =
dX̃ij

2 dt
, i, j = 1, . . . , m. (33)

Considering (18), and if Y is Gaussian, the velocity, and hence the displacement,
are Gaussian at any travel time. For a non-Gaussian field, the displacement becomes

Gaussian by merit of the central limit theorem after a certain travel time. D̃ij in (33) can
be used to account for the consequences of the wiped-out spectrum, or the subgrid-
scale variability, and hence we refer to it as the ‘block-effective macrodispersion
tensor’. The qualifier ‘block effective’ serves to distinguish it from the macrodispersion
coefficients (Dagan 1989; Gelhar 1993). The relationship between the two will be
discussed at the end of this section.

A fundamental issue we address next concerns the conditions under which (33)
holds, or in other words, the conditions under which the single particle displacement
statistics can be used for computing macrodispersion coefficients. This issue has been
investigated in the study by Dagan (1991), concluding that for (33) to qualify, the
plume must be ergodic, implying a width of several integral scales in the direction
normal to mean flow. These conditions are quite restrictive, in general. However,

the integral scale of Ỹ , IỸ , is smaller than IY , the integral scale of Y , and hence
ergodicity with regard to the wiped-out variability is attained under less restrictive
conditions: plumes that are non-ergodic with respect to IY can be ergodic with respect
to IỸ . This idea is demonstrated in figure 2. This figure shows the ratio IỸ /IY as
a function of the ratio λ/IY . IỸ increases with λ and approaches IY for large λ,
as the wiped-out spectrum approaches the total spectrum of the variability in the
aquifer.
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Figure 2. The ratio between the integral scale of Ỹ and that of Y as
a function of the block scale.

Since

D̃ij(t) =

∫ t

0

ũij(t
′) dt′ (34)

we can combine (27) and (3) with (35) to get the general expression for the block-
effective macrodispersion coefficient:

D̃ij(t) =
1

(2π)m/2

∫ t

0

∫
R

. . .

∫
e−ik ·U tũij(k) dk dt (35)

where R is the domain of the wiped-out spectrum (see figure 1). A more explicit form
is obtained by introducing (23), as follows:

D̃ij(t) =
1

(2π)m/2

∫ t

0



∫ ∞
−∞
. . .

∫ ∞
−∞

e−ik ·U t′UqUp

{
δjq − kjkq

k2

}
×
{
δlp − klkp

k2

}
CY (k) dk

−
∫ π/λ1

−π/λ1

. . .

∫ π/λm

−π/λm
e−ik ·U t′UqUp

{
δjq − kjkq

k2

}
×
{
δlp − klkp

k2

}
CY (k) dk


dt′ (36)

and in a more compact form:

D̃ij(t) =
1

(2π)m/2

∫ t

0

[∫ ∞
−∞
. . .

∫ ∞
−∞

e−ik ·U t′UqUp

{
δjq − kjkq

k2

}

×
{
δlp − klkp

k2

}
F(k)CY (k) dk

]
dt′, (37)
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with

F(k) =

{
0, |ki| 6 π/λi for all i

1 otherwise

acting as a filter function.
The first m-integral on the right-hand side of (36) is the well-known expression for

the macrodispersion coefficient for ergodic plumes, documented in Gelhar & Axness
(1983) and Dagan (1984), which we denote here as D∗ij(t). Thus we can simplify (36)
to the following form:

D̃ij(t) = D∗ij(t)− 1

(2π)m/2

∫ t

0

[∫ π/λ1

−π/λ1

. . .

∫ π/λm

−π/λm
e−ik ·U t′UqUp

×
{
δjq − kjkq

k2

}{
δlp − klkp

k2

}
CY (k) dk

]
dt′. (38)

Two limits of (38) are immediate. For λi → 0, implying a very fine grid discretization,

D̃ij → 0, since all the effects of the spatial variability are modelled directly on the

grid. For very large λi, D̃ij → D∗ij , since none of the heterogeneity is modelled directly,
and it all needs to be modelled through macrodispersion coefficients.

In both cases, the macrodispersion coefficients are time dependent, and hence non-
local. The non-locality is not an outcome of the invisible spectrum, and is rather
general in the case of heterogeneous media. This definition of non-locality, reflecting
the Lagrangian nature of our approach, is somewhat different from the one endorsed
by Cushman and co-workers (Cushman, Deng & Hu 1995) and Neuman and co-
workers (Neuman & Orr 1993). In their Eulerian approach, a constitutive theory ‘. . .
is said to be non-local if it involves integrals over space and or time or derivatives of
order higher than the first’ (Hu, Deng & Cushman 1997).

5. Analytical results for planar flow
We consider the case of planar flow in a domain defined by an anisotropic,

stationary exponential log-conductivity covariance CY :

CY (r) = σ2
Y exp

[
−
(
r2

1

I2
1

+
r2

2

I2
2

)1/2
]
, (39)

with I1 and I2 being the integral scales of the log-conductivity in the x1- and x2-
directions, respectively. The mean flow direction is taken along the x1-axis, and hence
U = (U1, 0). The corresponding radial spectrum is given by (Dagan 1989)

CY (k) =
σ2
Y I1I2

[1 + (I1k1)2 + (I2k2)2]3/2
. (40)

When combining (40) with (23) and (38) for i = j = 1, the longitudinal macrodisper-
sion coefficient is obtained:

D̃11(t) = D∗11(t)− 2σ2
Y I1I2U

2
1

π

∫ t

0

∫ π/λ1

0

∫ π/λ2

0

(
1− k2

1

k2

)2

× cos (U1k1t
′)

[1 + (I1k1)2 + (I2k2)2]3/2
dk1 dk2 dt′. (41)
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Figure 3. The longitudinal block-effective macrodispersion as a function of block scale (marked
on each curve) and travel time (equation (42)).

After integration over time and k2, the following expression, requiring only one
integration, is obtained:

D̃11(t) = D∗11(t)− 2σ2
Y I1I2U1

π

∫ π/λ1

0

sin (U1k1t)

×


a(2a2 + 3k2

1 + 2I2
1a

2k2
1 + I2

2a
2k2

1 + 3I2k4
1)

k1(1 + I2
2a

2 + I2
1k

2
1)1/2(a2 + k2

1)(1 + I2
1k

2
1 − I2

2k
2
1)2

− 3(1 + I2
1k

2
1)

(1 + I2
1k

2
1 − I2

2k
2
1)5/2

tan−1

(
a(1 + I2

1k
2
1 − I2

2k
2
1)1/2

k1(1 + I2
2a

2 + I2
1k

2
1)1/2

)
 dk1, (42)

where a= π/λ2. Figure 3 depicts D̃11 for various values of λ= λ1 = λ2. It is observed

that larger values of λ lead to larger D̃11: as the value of λ increases, the portion of
the spectrum which is wiped out increases, and hence it must be modelled through

macrodispersion coefficients. For λ around 50IY , D̃11 approaches the macrodispersion
coefficient proposed by Dagan (1984). At this range of λ-values, the velocity is
modelled only through its expected value, and the effects of the spatial variability in
the velocity field on transport are modelled through macrodispersion coefficients. The
curves corresponding to smaller λ separate the effects of subgrid-scale variability and
supragrid-scale variability. The last effects, represented by the difference between the
finite-λ and infinite-λ curves, are the effects of the visible spectrum, captured directly
on the numerical grid by construction.

The macrodispersion coefficients are non-local, but they eventually reach a con-
stant, Fickian limit. The rate of approach varies, and increases with λ. This outcome
demonstrates the scale dependence of macrodispersion. As the length scale character-
izing the wiped-out spectrum becomes smaller, the migrating solute body is sampling
the entire range of that spectrum after a shorter travel time, and the Fickian limit is
attained earlier.
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Figure 4. The lateral block effective macrodispersion as a function of block scale
(marked on each curve) and travel time (equation (43)).

A similar procedure with i = j = 2 leads to the following result for the lateral macro-
dispersion coefficient:

D̃22(t) = D∗22(t)− σ2
Y I1I2U1

π

∫ π/λ1

0

sin (U1k1t)

×


− ak1(1 + 3I2

2a
2 + I2

1k
2
1 + 2I2

1k
2
1)

(1 + I2
2a

2 + I2
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2
1)1/2(a2 + k2

1)(1 + I2
1k

2
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2k
2
1)2

+
(1 + I2

1k
2
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2
1)

(1 + I2
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2
1 − I2

2k
2
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(
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1k
2
1 − I2

2k
2
1)1/2

k1(1 + I2
2a

2 + I2
1k

2
1)1/2

)
 dk1. (43)

D̃22 is plotted for various λ-values on figure 4. The plot corresponding to λ=∞
corresponds to the result published by Dagan (1984), and its asymptotic large-time
limit is zero. For λ smaller than ∞, the asymptotic large-time limit is zero as well, but
it occurs again at a much earlier time.

6. Numerical examination
Figure 5 compares analytical and numerical results for several values of λ, as

a function of time. The results are for σ2
Y = 1. The curve at the top represents

the longitudinal macrodispersion coefficient (Dagan 1989), equivalent to the block-
effective macrodispersion coefficient in the case λ→∞. Note that this is the coefficient
to be used when the velocity field is modelled only through its expected value: in
this case, the effects of the spatial variability of the velocity field on mixing are
all expressed as dispersive fluxes. For smaller λ, some of that spatial variability is
modelled directly over the grid through the advective fluxes, leading to reduction in
the macrodispersion coefficient. Hence the difference between the various curves and
the curve on the top represents the mixing which is modelled directly through the
spatial variability of the velocity field.

The procedure followed for generating these results consists of the following steps:
(i) A random Gaussian log-conductivity field is generated. (ii) ‘Measurements’ are



Block-effective macrodispersivity and scale-dependent transport 173
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 7

t

D̃
11

/r
2 Y
U

I Y

2I

4I

6I

8I

3 51

∞

Figure 5. A comparison of analytical results for block-effective longitudinal macrodispersion and
numerical results. The curve marked ∞ denotes the effective macrodispersion coefficients, which
correspond to the case of block size tending to infinity.

then taken at the nodes of the grid with spacing λ. These measurements represent
the data available from the field. (iii) To model the effects of the inter-nodal, or
unsampled, variability, a series of conditional simulations of the log-conductivity field
is conducted, over a grid with spacing much smaller than λ. Note that in conditional
simulations, the measurement values at the nodes are fixed and are equal to those
taken at step (ii). The log-conductivity fields were generated through HYDRO GEN
(Bellin & Rubin 1996). (iv) The velocity fields corresponding to each log-conductivity
field were then determined using a flow field simulator. (v) Transport was simulated
through particle tracking: in each realization, the displacement of a single particle
was simulated. The number of realizations was determined such that convergence of
the ensemble statistics was ensured.

7. A unified approach to the plume scale and grid scale
The issue of plume scale has entered our development so far only through the

comparison between the plume’s dimension with IỸ , the integral scale of Ỹ . When
the plume is much larger, the macrodispersion coefficients developed using the single-
particle ensemble statistics model correctly the dispersion process in an experiment.
A plume of such dimension is referred to as ergodic.

For modelling transport of non-ergodic plumes, macrodispersion coefficients need
to be developed which account for the effects of the plume scale. While very little
work has been done so far on the issue of grid scale, there is a large body of work
which has been devoted to the issue of plume scale (Kitanidis 1988; Dagan 1991;
Rajaram & Gelhar 1993a, b; Zhang & Lin 1998).

We propose that with a slight change of definitions, the results of the previous
sections can be used to address the problem of plume-scale-dependent transport (while
ignoring grid-scale issues). Consider a tracer plume of dimensions λi, i= 1, . . . , m,
moving in a geological environment similar to the one considered in this study.
The only portion of the velocity spectrum which contributes to mixing is the high-
wavenumber portion, identical to the invisible spectrum in the case of grid block
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Figure 6. (a) The effects of the sub-grid variability on dispersion in the case of a large plume. The
plume is not affected by wavenumbers inside the solid line. No action is needed to remove these
effects. The subgrid variability includes the wavenumbers outside the dashed line. (b) The effects
of the sub-grid variability on dispersion in the case of a small plume. The plume is affected by
wavenumbers outside the dashed line. The block-effective dispersion coefficients need to account
only for these wavenumbers. The effects of the wavenumbers in the strip between the solid line and
dashed line should be eliminated. That strip will keep decreasing in size as the plume increases in
dimension.

scales λi which we considered in previous sections. For this problem definition, a
solution was presented by Rajaram & Gelhar (1993b, equation 37a, with 1−F there
equal to our F) which is identical to our (37). The surprising conclusion is that the
block-scale and plume-scale transport problems have a common solution.

We wish now to combine the effects of both grid scale and plume scale. The grid
scales are, as previously, λi. Additionally, we denote the plume scales at time t by
li(t). Recalling that the grid’s Nyquist numbers π/λi define lower cut-offs on the
variability captured by the grid (wiped-out variability is ki > π/λi) while the plume’s
Nyquist numbers π/li(t) define lower cut-offs on the variability affecting the plume’s
dispersion, the following two situations need to be considered (figure 6):

(i) The case of π/λi > π/li(t), see figure 6(a). This is the case of a plume larger
than the grid block. The plume’s Nyquist numbers will filter the effects of the
ki > π/li(t) which are simulated directly on the grid. The smaller-scale variability is
either simulated on the grid or modelled through the block-effective dispersion tensor.
Hence the plume’s scale does not affect the block-effective macrodispersivities.

(ii) The case of π/λi < π/li(t), see figure 6(b). This is the case of a plume smaller
than the grid block. This case is problematic since the plume is dispersed over the

block regardless of the dispersion coefficient. But D̃ij in this case can be used to
compute when the plume reaches the block size, and case (i) applies. Here there
is a range of subgrid-scale variability which does not affect the plume’s dispersion,
and the block-effective dispersivities need to be modified. This can be achieved by
modifying (37) to the following form:

D̃ij(t) = D∗ij(t)− 1

(2π)m/2

∫ t

0

[∫ π/Ω1

−π/Ω1

. . .

∫ π/Ωm

−π/Ωm
e−ik ·U t′UqUp

×
{
δjq − kjkq

k2

}{
δlp − klkp

k2

}
CY (k) dk

]
dt′ (44)
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with

Ωi =

{
li(t) for li(t)<λi

λi otherwise.
(45)

The significance of (44) is that it accounts for the effects of both the grid block scale
and plume scale. This unified approach is important in applications and is reported
here, to our knowledge, for the first time.

For li∼ 0 the second term on the right-hand side of (44) equals D∗ij(t), and hence

D̃ij(t) = 0, and the solute body does not disperse at all. The case of li > λi is addressed
by the second condition in (45) and is the one addressed in previous sections.
But it is recalled that the ergodic limit occurs only for li� IỸ . Following Dagan
(1991), this inequality should hold in at least one direction orthogonal to the mean
flow direction. Under non-ergodic conditions, the block-effective macrodispersion
coefficients represent average behaviour, and not a single experiment.

8. On the effects of pore-scale dispersion
Variability at the scale of the pore leads to pore-scale dispersion. The significance of

pore-scale dispersion depends on the process which is modelled, and the ratio between
IY and a characteristic length scale of the pore, known as the Péclet number. At large
Péclet numbers, the pore-scale dispersion’s contribution to the evolution of the spatial
moments of a solute body can be simply added to the contribution of the variability
of the conductivity (Fiori 1996). At smaller Péclet numbers there is an increase in
the interaction between the pore-scale and large-scale effects. Consider for example
transport in a domain composed of thin layers of different permeabilities with flow in
the direction of the layers. It is easy to visualize that pore-scale dispersion transfers
mass across layers which in turn enhances the longitudinal dispersion. The formalism
developed in the previous sections allows the effects of pore-scale variability on the
block-effective dispersivity to be introduced.

To address this issue we adopt Corrsin’s conjecture (Lundgren & Pointin 1975)
and modify it for consistency. Corrsin’s conjecture has been pursued by Dagan (1987,
1989) and Neuman & Zhang (1990) in their work on macrodispersion. Employing
Corrsin’s conjecture and adopting the equality (30), the Lagrangian velocity covariance
is obtained as follows:

vij(t) =
1

(2π)m/2

∫ ∞
−∞
. . .

∫ ∞
−∞

exp (ik ·U t− k ·Dd · kT t)

×〈exp (ik ·X ′)〉UqUp

{
δjq − kjkq

k2

}{
δlp − klkp

k2

}
CY (k) dk (46)

where Dd is the pore-scale dispersion tensor, X ′ is defined in (26), and the superscript
T denotes transpose. Note that the exponential in angled brackets introduce terms
of order higher than σ2

Y and can be approximated by unity for consistency (Dagan
1987; Fiori 1996). Introducing the filter F (see equation (37)) and integrating (46)
over time, leaves

D̃ij(t) =
1

(2π)m/2

∫ ∞
−∞
. . .

∫ ∞
−∞

exp (ik ·U t− k ·Dd · kT t)− 1

ik ·U − k ·Dd · kT

×UqUp

{
δjq − kjkq

k2

}{
δlp − klkp

k2

}
F(k)CY (k) dk. (47)
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Figure 7. The large-time asymptotic limits of the longitudinal block-effective dispersivity D̃11 as a
function of the grid spacing λ and the Péclet number (UIY /Dd). The results are obtained based on
equation (47).

The large-time asymptotic limits of D̃11 based on the method of Fiori (1996) are
plotted on figure 7 as functions of the Péclet number (defined as UIY /Dd) for various
block dimensions. The tensor Dd was assumed here to be diagonal and isotropic, with

the elements along the diagonal equal to Dd. We find D̃11 to be insensitive to pore-scale
dispersion at the range of Péclet numbers usually encountered in field applications

(> 100). At smaller Péclet numbers pore-scale dispersion acts to reduce D̃11, and its
effects are more pronounced for smaller grid size λ. As λ decreases, the wiped-out
variability is composed of larger k, and the dumping effect of Dd in (46) is enhanced.

9. Discussion
A tensor D̃ij is developed for introducing the effects of subgrid variability on mixing

of tracers in porous media. Based on a SRF model for the spatial variability of the
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log-conductivity, this tensor models the dispersive flux resulting from the spatial
variability that becomes ‘invisible’ in numerical models when the grid block scale is
large compared to the integral scale of the log-conductivity. Previous works (Ababou
et al. 1989) have shown that the need for such tensor arises when the grid-block scale
exceeds about a quarter of the log-conductivity integral scale.

The theory presented here extends and combines the Lagrangian theory of Dagan
(1984) with the spectral conditioning approach presented by Ababou & Gelhar (1990).
The basic idea is to separate the variability of the conductivity that is visible through
measurements taken with spacing of characteristic length λ, and that which is invisible
and hence unaccounted for. The block-effective macrodispersion tensor is intended to
capture the effects of the variability which becomes invisible due to partial sampling.

The length scale λ need not be the typical spacing of measurements in the field. It
can also represent the numerical grid-block scale with measurements specified at the
nodes or centres of the grid blocks, as commonly done in Monte Carlo simulations.
A major benefit of the proposed theory is in allowing conditioning the flow and
transport simulation on field data. This is achieved by incorporating the field data in
the flow model, and recognizing only the unmodelled heterogeneity in the transport
part. For modelling, such an approach is appealing.

Another length scale of significance is the scale of the solute plume l, which
introduces another filter (Dagan 1991; Rajaram & Gelhar 1993a, b, 1995). The limited
plume dimension acts to suppress the effects of the low-wavenumber fluctuations, and
hence it needs to be recognized only when it is smaller than λ. Our theory addressed
this aspect, and the block-effective dispersion tensor can be modified to account
for the suppressed variability due to grid-block scale and plume scale. We showed
that the plume scale needs to be accounted for directly, i.e. through the dispersion
tensor, only when the plume’s scale is smaller than the grid-block’s scale. When the
plume is larger, the variability which is affecting it is modelled in part through the
block-effective macrodispersion tensor or directly over the grid.

Reliable modelling of transport in the subsurface requires that models be con-
ditioned on measurements of variables such as conductivity, pressure and velocity
(Rubin 1991a,b, 1997; Rubin & Dagan 1992). Macrodispersion theories ignored this
aspect. The justification is that the effects of data are only local and need not be
considered when modelling transport of large solute bodies. Such solute bodies have
been referred to as ergodic (Dagan 1991), and their displacement and dispersion
are controlled by effective parameters and not local values. This is no longer true
when dealing with non-ergodic solute bodies. Our approach addresses this issue
systematically. We propose that a numerical grid can be developed with the grid
block at the scale of the spacing between measurements. This grid captures the
low-wavenumber portion of the variability. The block-effective dispersion tensor cap-
tures the high-wavenumber portion. That tensor is in general non-stationary, and it
depends on local values of the conductivity. For domains of small variance in the
log-conductivity these effects are minor and negligible.

To our knowledge, no theory exists which accounts for grid-scale, plume-scale, and
pore-scale dispersion collectively, while allowing transport models to be conditioned
on field measurements. A brief perspective on previous works on block-effective
dispersion coefficients is now given. Works in these area addressed separately the issues
of block scale and grid scale. Plume-scale issues were addressed in Kitanidis (1988),
Dagan (1991), Rajaram & Gelhar (1993a, b) and more recently Zhang & Lin (1998).
Much less work has been done on issues of grid scale. The two studies reported below
addressed the issue through either conjectures or idealized mathematical constructs,
but no general framework has been provided.
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To address the grid-scale issue, Dagan (1994) modelled the solute plume as being
composed of a series of sub-plumes, each of the size of the grid block. He then as-
sumed that the suppression of the subgrid-scale variability entails that each subplume
moves in the aquifer isomorphically, and developed the block-effective coefficients
to compensate for the discrepancy. In this approach the large-scale–small-scale vari-
ability interactions are neglected. The results of Dagan (1994) are close to, though
somewhat higher than, the results of the present study. That work did not address
plume-scale issues and pore-scale dispersion. Liu & Molz (1997) made a conjecture
regarding the large-time, asymptotic limit of the longitudinal block-effective macrodis-
persion coefficient which is in agreement with the asymptotic limit presented here but
under the conditions of small variability in the log-conductivity. That work did not
address plume-scale issues, pore-scale dispersion issues, the pre-asymptotic behaviour
or the lateral dispersion terms.
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gratitude the comments and suggestions made by our reviewers. This study was
supported by NSF Hydrologic Sciences Program through grant EAR-9628306, and
by DOE’s ESMP program through grant DE-FG07-96ER14726.

Appendix
The Fourier transform (FT) pair is defined here through an example using CY , the

spatial covariance of Y . The FT is

CY (k) =
1

(2π)m/2

∫ ∞
−∞
. . .

∫ ∞
−∞
CY (r) exp (ik · r) dr, (A 1)

where dr = dr1 . . .drm. The inverse transform is defined as follows:

CY (r) =
1

(2π)m/2

∫ ∞
−∞
. . .

∫ ∞
−∞
CY (k) exp (−ik · r) dk. (A 2)

The FT pair defined here is slightly different from the conventional one in terms
of the coefficient preceding the integrals. Its benefit to us is its symmetry, with the
exception of the sign of i. We shall refer to CY (k) and other FTs of covariances as
radial spectra. The radial spectrum can be converted to the customary spectrum using

SY (k) =
1

(2π)m/2
CY (k). (A 3)

We recall some basic properties of the radial spectrum of the velocity in Fourier
space and their relationship with their counterparts in physical space. The radial
spectrum of the velocity covariance is the Fourier transform of the velocity covariance
in physical space:

ũij(k) = FT[ũij(r)], (A 4)

where r is the separation distance vector. Defining further ũj(k) = FT[ũj(x)], it can
be shown that

〈ũi(k)ũ∗j (k
′)〉 = (2π)m/2ũij(k)δ(k − k′), (A 5)

where the asterisk denotes the complex conjugate. Similarly, from (22), for ũi(k)=aiỸ(k)

and ũ∗j (k) = ajỸ
∗(k), we have

〈ũi(k)ũ∗j (k
′)〉 = (2π)m/2aiajCỸ (k)δ(k − k′), (A 6)
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which, when matched with (A 5), leads to (23). For additional discussion see Dagan
(1989).
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